文末附上電子版的下載方式,有需要的家長們,千萬不要錯過喲!

直線相關(guān)知識點

1、過兩點有且只有一條直線

2、兩點之間線段最短

3、同角或等角的補角相等

4、同角或等角的余角相等

5、過一點有且只有一條直線和已知直線垂直

6、直線外一點與直線上各點連接的所有線段中,垂線段最短

7、平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9、同位角相等,兩直線平行

10、內(nèi)錯角相等,兩直線平行

11、同旁內(nèi)角互補,兩直線平行

12、兩直線平行,同位角相等

13、兩直線平行,內(nèi)錯角相等

14、兩直線平行,同旁內(nèi)角互補

三角形相關(guān)知識點

15、定理三角形兩邊的和大于第三邊

16、推論三角形兩邊的差小于第三邊

17、三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°

18、推論1直角三角形的兩個銳角互余

19、推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

20、推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

21、全等三角形的對應(yīng)邊、對應(yīng)角相等

22、邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

23、角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等

24、推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

25、邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個三角形全等

26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等

27、定理1 在角的平分線上的點到這個角的兩邊的距離相等

28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

29、角的平分線是到角的兩邊距離相等的所有點的集合

30、等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)

31、推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33、推論3 等邊三角形的各角都相等,并且每一個角都等于60°

34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

35、推論1 三個角都相等的三角形是等邊三角形

36、推論 2 有一個角等于60°的等腰三角形是等邊三角形

37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

38、直角三角形斜邊上的中線等于斜邊上的一半

軸對稱知識點

39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等

40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42、定理1關(guān)于某條直線對稱的兩個圖形是全等形

43、定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

44、定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

45、逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

勾股定理知識點

46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

47、勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形

平行四邊形知識點

48、定理 四邊形的內(nèi)角和等于360°

49、四邊形的外角和等于360°

50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

51、推論 任意多邊的外角和等于360°

52、平行四邊形性質(zhì)定理1 平行四邊形的對角相等

53、平行四邊形性質(zhì)定理2 平行四邊形的對邊相等

54、推論 夾在兩條平行線間的平行線段相等

55、平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分

56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

57、平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

60、矩形性質(zhì)定理1 矩形的四個角都是直角

61、矩形性質(zhì)定理2 矩形的對角線相等

62、矩形判定定理1 有三個角是直角的四邊形是矩形

63、矩形判定定理2 對角線相等的平行四邊形是矩形

64、菱形性質(zhì)定理1 菱形的四條邊都相等

65、菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角

66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

67、菱形判定定理1 四邊都相等的四邊形是菱形

68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形

69、正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等

70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

補充知識點

71、定理1 關(guān)于中心對稱的兩個圖形是全等的

72、定理2 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

73、逆定理 如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

74、等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等

75、等腰梯形的兩條對角線相等

76、等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

77、對角線相等的梯形是等腰梯形

78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

79、推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

80、推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊

81、三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半

82、梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2 S=L×h

83、(1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

84、(2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b

86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng)線段成比例

87、推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

90、定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

91、相似三角形判定定理1 兩角對應(yīng)相等,兩三角形相似(ASA)

92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

93、判定定理2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

94、判定定理3 三邊對應(yīng)成比例,兩三角形相似(SSS)

95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

96、性質(zhì)定理1 相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

97、性質(zhì)定理2 相似三角形周長的比等于相似比

98、性質(zhì)定理3 相似三角形面積的比等于相似比的平方

99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

本文打印版獲取方式:

文末留言處輸入“ 數(shù)學(xué)” 2個字

即可獲取

來源丨網(wǎng)絡(luò)(如有侵權(quán)請及時聯(lián)系刪除,謝謝!

免責聲明:本文僅代表文章作者的個人觀點,與本站無關(guān)。其原創(chuàng)性、真實性以及文中陳述文字和內(nèi)容未經(jīng)本站證實,對本文以及其中全部或者部分內(nèi)容文字的真實性、完整性和原創(chuàng)性本站不作任何保證或承諾,請讀者僅作參考,并自行核實相關(guān)內(nèi)容。

舉報郵箱:3220065589@qq.com,如涉及版權(quán)問題,請聯(lián)系。